YES 1.619 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  ((index :: (Char,Char ->  Char  ->  Int) :: (Char,Char ->  Char  ->  Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.
Binding Reductions:
The bind variable of the following binding Pattern
b@(vw,vx)

is replaced by the following term
(vw,vx)



↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((index :: (Char,Char ->  Char  ->  Int) :: (Char,Char ->  Char  ->  Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
index (vw,vxci
 | inRange (vw,vxci
 = fromEnum ci - fromEnum vw
 | otherwise
 = error []

is transformed to
index (vw,vxci = index2 (vw,vxci

index1 vw vx ci True = fromEnum ci - fromEnum vw
index1 vw vx ci False = index0 vw vx ci otherwise

index0 vw vx ci True = error []

index2 (vw,vxci = index1 vw vx ci (inRange (vw,vxci)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ LetRed

mainModule Main
  ((index :: (Char,Char ->  Char  ->  Int) :: (Char,Char ->  Char  ->  Int)

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
fromEnum c <= i && i <= fromEnum c'
where 
i  = fromEnum ci

are unpacked to the following functions on top level
inRangeI wu = fromEnum wu



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
HASKELL
              ↳ Narrow

mainModule Main
  (index :: (Char,Char ->  Char  ->  Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNat(Succ(wv540), Succ(wv520)) → new_primMinusNat(wv540, wv520)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_index1(wv36, wv37, Succ(wv380), Succ(wv390)) → new_index1(wv36, wv37, wv380, wv390)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_index10(wv52, wv53, wv54, Succ(wv550), Succ(wv560)) → new_index10(wv52, wv53, wv54, wv550, wv560)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_index11(wv22, wv23, wv24, Succ(wv250), Succ(wv260)) → new_index11(wv22, wv23, wv24, wv250, wv260)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: